Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium

نویسندگان

  • Julia Andrea Deditius
  • Sebastian Felgner
  • Imke Spöring
  • Caroline Kühne
  • Michael Frahm
  • Manfred Rohde
  • Siegfried Weiß
  • Marc Erhardt
  • Roman G. Gerlach
چکیده

Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Novel Factors Involved in Modulating Motility of Salmonella enterica Serotype Typhimurium

Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the a...

متن کامل

Multidrug-Resistant Salmonella enterica Serovar Typhimurium Isolates Are Resistant to Antibiotics That Influence Their Swimming and Swarming Motility

Motile bacteria employ one or more methods for movement, including darting, gliding, sliding, swarming, swimming, and twitching. Multidrug-resistant (MDR) Salmonella carries acquired genes that provide resistance to specific antibiotics, and the goal of our study was to determine how antibiotics influence swimming and swarming in such resistant Salmonella isolates. Differences in motility were ...

متن کامل

Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide.

Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that...

متن کامل

Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals

Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using m...

متن کامل

Swarm-cell differentiation in Salmonella enterica serovar typhimurium results in elevated resistance to multiple antibiotics.

Although a wealth of knowledge exists about the molecular and biochemical mechanisms governing the swimming motility of Salmonella enterica serovar Typhimurium, its surface swarming behavior has not been extensively characterized. When inoculated onto a semisolid agar medium supplemented with appropriate nutrients, serovar Typhimurium undergoes a morphological differentiation whereby single cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015